Treatment with a CRH-R1 antagonist prevents stress-induced suppression of the central neural drive to the reproductive axis in female macaques.

نویسندگان

  • S M Herod
  • C R Pohl
  • J L Cameron
چکیده

In response to everyday life stress, some individuals readily develop reproductive dysfunction (i.e., they are stress sensitive), whereas others are more stress resilient. When exposed to mild combined psychosocial plus metabolic stress (change in social environment plus reduced diet), female cynomolgus monkeys can be categorized as stress sensitive (SS; they rapidly become anovulatory in response to stress), medium stress resilient (MSR; they slowly become anovulatory in response to prolonged stress), or highly stress resilient (HSR; they maintain normal menstrual cycles in response to stress). Previously, we reported that monkeys that develop abnormal menstrual cycles following exposure to mild combined stress (MSR + SS) have increased plasma cortisol levels the day they move to a novel room and start a reduced diet compared with HSR monkeys. In this study, we examined whether there is a similar acute effect of mild combined stress on the reproductive axis specifically in the combined group of MSR + SS animals by measuring LH pulse frequency and whether treatment with a CRH-R1 antagonist can prevent a stress-induced suppression of LH pulse frequency presumably by inhibiting activity of the HPA axis. Animals that developed abnormal menstrual cycles in response to stress (MSR + SS monkeys) suppressed LH pulse frequency in response to stress exposure. Pretreatment with 10 mg/kg iv antalarmin prevented the stress-induced suppression of LH secretion in these animals without the stress-induced increase in cortisol secretion being blocked. We conclude that CRH, acting via nonneuroendocrine mechanisms to regulate neurotransmitter systems other than the HPA axis, plays a role in causing stress-induced reproductive impairment in stress-sensitive individuals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The CRH-R1 receptor mediates luteinizing hormone, prolactin, corticosterone and progesterone secretion induced by restraint stress in estrogen-primed rats

Acute stress has been shown to modify hypothalamus-pituitary-gonadal (HPG) axis activity. Corticotropin-releasing hormone (CRH), the principal regulator of the hypothalamus-pituitary-adrenal (HPA) axis, has been implicated as a mediator of stress-induced effects on the reproductive axis. The role of the specific CRH receptor subtypes in this response is not completely understood. In the current...

متن کامل

Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide.

In addition to its role as a potent vasodilator, calcitonin gene-related peptide (CGRP) is centrally involved in a variety of stress responses, including activation of the hypothalamo-pituitary-adrenocortical axis. It is well known that stress suppresses the activity of the hypothalamic GnRH pulse generator, the central regulator of LH and FSH pulses, resulting in reproductive dysfunction. The ...

متن کامل

Nicotine stimulates secretion of corticosterone via both CRH and AVP receptors.

Corticosterone-releasing hormone (CRH) and arginine vasopressin (AVP) are crucial components of the hypothalamic-pituitary-adrenal axis that stimulates the release of adrenocorticotropic hormone from the pituitary and mediate the stress response. CRH binds to two subtypes of CRH receptors (CRH-R1 and CRH-R2) that are present in both central and peripheral tissues. We used the CRH-R1-specific an...

متن کامل

Corticotropin-releasing hormone effects on luteinizing hormone and cortisol secretion in intact female rhesus macaques.

It is generally accepted that corticotropin-releasing hormone (CRH) is the central mediator of stress-activated changes in the pituitary-adrenal axis because it results in the release of ACTH and ultimately increases the systemic levels of cortisol. And, because in some situations CRH also inhibits the hypothalamic release of GnRH, it has been presumed that it plays the central role in stress-r...

متن کامل

Neurokinin B signaling in the female rat: a novel link between stress and reproduction.

Acute systemic stress disrupts reproductive function by inhibiting pulsatile gonadotropin secretion. The underlying mechanism involves stress-induced suppression of the GnRH pulse generator, the functional unit of which is considered to be the hypothalamic arcuate nucleus kisspeptin/neurokinin B/dynorphin A neurons. Agonists of the neurokinin B (NKB) receptor (NK3R) have been shown to suppress ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2011